Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 57, 2018 - Issue 3
402
Views
10
CrossRef citations to date
0
Altmetric
Chemical and Extractive Metallurgy - Hydrometallurgy

Pyrite oxidation with ozone: stoichiometry and kinetics

, &
Pages 294-303 | Received 12 May 2017, Accepted 28 Mar 2018, Published online: 12 Apr 2018
 

ABSTRACT

One of the most frequent causes of refractoriness in precious metals leaching is their occlusion or fine dissemination into a pyritic matrix. This study experimentally explores the acid leaching of pyrite with ozone, suggests the stoichiometry of the reaction, estimates its activation energy and defines the effect of the main variables on the leaching kinetics. The results of stoichiometry tests allow establishing that one mole of pyrite requires 7.7 moles of ozone to produce one mole of ferric ion and 2 moles of HSO4− ions. A decrease in the particle size, solution pH and solids’ concentration of the leaching system increases pyrite dissolution. The type of acid (nitric, sulphuric and hydrochloric) does not affect pyrite dissolution rate. Up to 60% of pyrite is dissolved when the optimal experimental conditions are employed (1 g pyrite (−25 µm), 800 mL of 0.18 M of H2SO4, 800 rev min−1, 1.2 L min−1 gas stream O2/O3 with 0.079 g O3 L−1 and 25°C). The apparent activation energy of the pyrite-ozone reaction is 14.92 kJ mol−1, and the absence of a passive layer on the pyrite surface and the linearity of the dissolution profiles suggest that the dissolution kinetics is controlled by the chemical reaction.

RÉSUMÉ

L’une des plus fréquentes raisons pour la réfractarité lors de la lixiviation des métaux précieux est leur occlusion ou dissémination fine dans une matrice pyritique. Dans le dessein de contribuer aux connaissances nécessaires requises pour le traitement de ces minerais réfractaires, cette étude explore expérimentalement la lixiviation acide à l’ozone de la pyrite, suggère la stoechiométrie de la réaction, estime son énergie d’activation et définit l’effet des principales variables sur la cinétique de lixiviation.

Les résultats des essais de stoechiométrie permettent d’établir qu’une mole de pyrite nécessite 7.7 moles d’ozone pour produire une molécule d’ion ferrique et 2 moles d’ions HSO4−. Une diminution de la taille de particule, du pH de la solution, et de la concentration de solides dans le système de lixiviation, augmente la dissolution de la pyrite. Le type d’acide (nitrique, sulfurique, ou chlorhydrique) n’affecte pas la vitesse de dissolution de la pyrite. Jusqu’à 60% de pyrite est dissoute quand on utilise les conditions expérimentales optimales (1 g pyrite (−25 μm), 800 mL de 0.18M d’H2SO4, 800 tours/min, 1.2 L min−1 de flux gazeux d’O2/O3 avec 0.079 g O3L−1 et 25°C).

L’énergie d’activation apparente de la réaction de pyrite-ozone est de 14.92 kJ mol−1, et l’absence d’une couche passive à la surface de la pyrite et la linéarité des profils de dissolution suggèrent que la cinétique de dissolution est contrôlée par la réaction chimique.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

C. Rodríguez-Rodríguez is a professor at the University of Guanajuato México. Her research projects focus on extraction of precious metals from refractory ores and ozone leaching.

F. Nava-Alonso is a professor at CINVESTAV México. Her research interests include hydrometallurgy, gold and silver recovery.

A. Uribe-Salas is a professor at CINVESTAV México. His current research projects focus on mineral processing, flotation and removal of polluting species from mining effluents.

Additional information

Funding

The authors gratefully acknowledge the financial support of Conacyt Mexico, through the PhD scholarship granted to C. Rodríguez-Rodríguez.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.