35
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Mathematical Modelling of Nitric Oxide Formation in Turbulent Diffusion Flames Doped with a Nitrogen Compound

, , , &
Pages 345-367 | Received 14 Dec 1998, Published online: 19 Apr 2007
 

Abstract

A numerical study has been effected to investigate nitric oxide (NO) formation in large-scale gas-oil spray flames doped with a nitrogen compound to simulate fuel-nitrogen. The mathematical model for aerodynamic/combustion incorporates a Reynolds-stress model for turbulence and an eddy-dissipalion model (Magnussen and Hjertager, 1978) for combustion. NO predictions are obtained using the Zeldovich mechanism for thermal-NO with two variants for the calculation of oxygen-atom concentration, and the kinetic rate expressions of De Soete (1975) for the formation of prompt- and fuel-NO. The effect of turbulence/chemistry interactions on NO formation rates is represented by a single variable beta probability density function. Predictions are compared with detailed in-flame and flue-gas data obtained in previous studies for different levels of doping with quinoline while maintaining the same flame conditions. These data allowed contributions of thermal- and fuel-NO to the total NO emissions to be estimated with a reasonable degree of accuracy. The predicted and measured gas temperature and major species concentrations are generally in good agreement though discrepancies exist in the shear layers near the burner. Validation of the NO post-processor against experimental data for different fuel-nitrogen doping levels has revealed good qualitative predictions and, in most cases, good quantitative agreements. The contributions of individual NO formation mechanisms to the total NO emissions are well simulated by the NO model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.