55
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Microgravity Ignition Experiment on a Droplet Array in High-Temperature Low-Speed Airflow

, , , &
Pages 169-178 | Received 21 Sep 1999, Published online: 17 Sep 2008
 

Abstract

The objectives of this study were to observe ignition events and to measure ignition times of a droplet array of n-decane placed in a high-temperature low-speed airflow under microgravity field. Due lo the difficulty of making droplets of the same size within a short period of time in a drop capsule, imitation droplets made of porous ceramic balls soaked with n-decane were used. Experimental conditions were a droplet diameter of 1 mm, droplet spacing within the range of 0 to 6 mm. airflow velocity of 0 to 10cm/s. and an airflow temperature of 925 K. According to OH emission images taken by a high speed camera with an OH band-path filter, ignition occurred around the droplets simultaneously at zero airflow velocity. At higher airflow velocities of more than several centimeters per second, however, ignition was initiated in the wake flow of the droplets and the flame spreads lo the forward region of droplets. A range of droplet spacing existed in which ignition times of droplet arrays were less than those of a single droplet and had a minimum ignition time at a certain spacing. The spacing of this minimum ignition time increased with an increase of airflow velocity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.