150
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Probability density function combustion modeling of diesel engines

&
Pages 19-54 | Published online: 17 Sep 2010
 

A new combustion model is presented that is capable of simulating the diesel combustion process. This combustion process is broken into three phases: low-temperature ignition kinetics, kinetically limited reactions, and mixing limited combustion. Low-temperature ignition kinetics are modeled using the Shell model. For combustion limited by mixing, a probability density function combustion model is used, which utilizes a commercial flamelet solver. For kinetically limited (premixed) combustion, an Arrhenius rate is used. To account for temperature fluctuations, this rate is weighted with a temperature probability density function. To transition between the premixed and diffusion burning modes, a transport equation for premixed fuel is solved. The ratio of fuel in a computational cell that is premixed is used to determine the combustion mode. This combustion model has been implemented into theKIVA-3V code. Results show that this combustion model accurately simulates the diesel combustion process.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.