547
Views
67
CrossRef citations to date
0
Altmetric
Original Articles

REDUCED-ORDER MODELING AND DYNAMICS OF NONLINEAR ACOUSTIC WAVES IN A COMBUSTION CHAMBER

, &
Pages 221-248 | Received 18 Nov 2003, Accepted 29 Jul 2004, Published online: 30 Aug 2006
 

ABSTRACT

For understanding the fundamental properties of unsteady motions in combustion chambers, and for applications of active feedback control, reduced-order models occupy a uniquely important position. A framework exists for transforming the representation of general behavior by a set of infinite-dimensional partial differential equations to a finite set of nonlinear second-order ordinary differential equations in time. The procedure rests on an expansion of the pressure and velocity fields in modal or basis functions, followed by spatial averaging to give the set of second-order equations in time. Nonlinear gasdynamics is accounted for explicitly, but all other contributing processes require modeling. Reduced-order models of the global behavior of the chamber dynamics, most importantly of the pressure, are obtained simply by truncating the modal expansion to the desired number of terms. Central to the procedures is a criterion for deciding how many modes must be retained to give accurate results. Addressing that problem is the principal purpose of this paper. Our analysis shows that, in the case of longitudinal modes, a first-mode instability problem requires a minimum of four modes in the modal truncation, whereas, for a second-mode instability, one needs to retain at least the first eight modes. A second important problem concerns the conditions under which a linearly stable system becomes unstable to sufficiently large disturbances. Previous work has given a partial answer, suggesting that nonlinear gasdynamics alone cannot produce pulsed or “triggered” true nonlinear instabilities, that suggestion is now theoretically established. Also, a certain form of the nonlinear energy addition by combustion processes is known to lead to stable limit cycles in a linearly stable system. A second form of nonlinear combustion dynamics with a new velocity coupling function that naturally displays a threshold character is shown here also to produce triggered limit-cycle behavior.

Acknowledgments

This work was supported in part by the California Institute of Technology, partly by the Caltech Multidisciplinary University Research Initiative under Grant No. N00014-95-1-1338 (Dr. Judah Goldwasser, Program Manager), partly by the Department of Energy Advanced Gas Turbine Systems Research (AGTSR) Program under Subcontract No. 98-02-SR072 (Dr. Larry Golan, Program Manager), and partly by the Air Force Office of Scientific Research under Grant No. F49620-99-1-0118 (Dr. Mitat Birkan, Program Manager).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.