168
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

THE FORMATION AND REDUCTION OF NO DURING THE COMBUSTION OF POWDERED PETROLEUM COKE—THE CASE OF CEMENT PLANT PRECALCINER CONDITIONS

, , &
Pages 579-611 | Received 30 May 2003, Accepted 16 Sep 2004, Published online: 25 Jan 2007
 

ABSTRACT

In a cement plant precalciner, petroleum cokes are burned between 800 and 1100°C and NO present in the flue gas is mainly fuel NO. We have developed a thermochemical model that describes the combustion of powdered petroleum coke in laminar flow conditions. It takes into account the main thermal and chemical mechanisms which occur during combustion. The formation and reduction mechanisms for fuel, prompt, and thermal NO are modeled; as far as gas-phase reactions are concerned, detailed chemistry is treated. Specific experiments were conducted to characterize the species produced by each of the major reactions and to determine their reaction kinetics. These experiments were performed in an entrained-flow reactor at 900°C under conditions typical of those in a precalciner. A gas analysis device based on high-resolution Fourier transform infrared was specifically developed to quantify the main gases which participate in NO formation and destruction. Thanks to this work, the main mechanisms were distinguished, and their relative importance in NO formation was established. Gas-phase reactions form most of the NO in the flame zone but contribute only slightly to the final NO emission. The quantity of thermal NO is negligible. Fuel NO is formed principally during combustion of the carbon residue. In compensation, a significant quantity of NO is reduced by heterogeneous reaction with the carbon of the particles.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.