473
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

EFFECT OF RADIATION ABSORPTION ON FUEL DROPLET EVAPORATION

&
Pages 1511-1542 | Received 02 Apr 2004, Accepted 30 Nov 2004, Published online: 25 Jan 2007
 

ABSTRACT

Fuel droplet evaporation is relevant to spray combustion in technologically important devices and must be understood to develop reliable combustion methods for hydrocarbon fuels. Motivated by this observation, this paper presents an analysis to examine the importance of radiation on unsteady evaporation of a single isolated fuel droplet. The droplet is considered to be spherical and semitransparent to radiation. A model based on radiative transfer theory is used to calculate the local volumetric rate of radiation absorption. Published spectral absorption coefficient data for hydrocarbon fuels is used to perform the calculations. The effects of thermal expansion and temperature-department thermophysical properties on the evaporation process are accounted for. The internal circulation in the droplet due to the external flow is accounted for through an effective thermal conductivity of the fuel droplet. The model predictions are compared with available theoretical results and experimental data. The results reveal that, depending on the relative importance of radiation and convection heat transfer, the neglect of radiation absorption by a droplet cannot be ignored in predicting the rate of fuel evaporation and the droplet lifetime.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.