280
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

STUDIES ON THE LIFTOFF PROPERTIES OF DIMETHYL ETHER JET DIFFUSION FLAMES

&
Pages 2219-2247 | Received 29 Jun 2005, Accepted 06 Feb 2006, Published online: 22 Nov 2006
 

Abstract

The liftoff properties of the DME jet diffusion flame were investigated experimentally and analytically with Emphasis on the influences of flame stretch and fuel oxygen. The present experiments showed that the DME jet diffusion flame exhibited a distinct liftoff phenomenon that differed from other hydrocarbon fuels. This unique phenomenon was analyzed theoretically by taking into consideration the effects of flame stretch and the fuel oxygen. The results showed that the stretch effect had a significant impact on the critical liftoff Schmidt number and the flame liftoff height. Based on these observations, a new criterion for the lifted flame at the blowout limit was presented. The results also demonstrated that the appearance of fuel oxygen in DME increases the fuel mixture fraction at the stoichiometric condition and changes the flame liftoff phenomenon. The effect of fuel oxygen was further investigated by adding air into propane and n-butane diffusion flames. It was found that with the increase of oxygen addition, both propane and n-butane flames change from the direct liftoff regime to the direct blowout regime. The results well described the unique liftoff phenomenon of DME and also applicable to other oxygenated and air diluted hydrocarbon fuels.

Acknowledgments

This work is supported by the American Chemistry Society research grant PRF#39162-AC9 and the NASA microgravity research grant (NNC04GA59G). Partial support for this research has also been provided by the Carbon Mitigation Initiative, a Princeton University research program supported by BP and Ford.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.