175
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

COMPARISON BETWEEN RNG AND FRACTAL COMBUSTION MODELS FOR LES OF UNCONFINED EXPLOSIONS

, &
Pages 401-416 | Received 16 Jun 2005, Accepted 13 Jan 2006, Published online: 25 Jan 2007
 

Abstract

The largest hydrogen-air explosion in the open atmosphere is analysed using large eddy simulation (LES) with two combustion models. The first model is based on the analysis of flame front self-induced turbulence by Karlovitz with a maximum augmentation of the stoichiometric hydrogen-air burning velocity of 3.6. Flame front wrinkling due to flow turbulence is modelled using a combustion model based on the renormalization group theory. The second approach uses fractal theory and increases the burning rate with radius as R1/3. The first model provided a nearly constant flame velocity after initial acceleration, contradictory to theory and experiments. The second model provided better agreement with experiment on flame radius and acceleration, but overestimated the pressure wave peak in the positive phase. Analysis of the results demonstrates that the theoretical value of the fractal dimension D = 2.33 in the simulations could be reduced, particularly due to partial resolution of flame front wrinkling by LES.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.