340
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Laser-Based Experimental and Monte Carlo PDF Numerical Investigation of an Ethanol/Air Spray Flame

, , , , , & show all
Pages 1529-1547 | Published online: 25 Jun 2008
 

Abstract

A turbulent ethanol spray flame is characterized through quantitative experiments using laser-based imaging techniques. The experimental data set is used to validate a numerical code for the simulation of spray combustion. The spray burner has been constructed to facilitate the computational treatment of the experiment; in particular the spray flame is stabilized without a bluff body or a pilot flame. The experiments include spatially resolved measurements of droplet sizes (Mie/LIF-dropsizing and PDA), droplet velocity (PDA), liquid-phase temperature (two-color LIF temperature imaging with Rhodamine B) and gas-phase temperature (multi-line NO-LIF temperature imaging). The measurements close to the nozzle exit are used to determine the initial conditions for numerical simulations. A novel probability density function (PDF) method is applied to calculate the development of the spray flame. A joint mixture fraction and enthalpy PDF is formulated. Its transport equation is modeled and solved using a Monte-Carlo method. A detailed ethanol/air combustion mechanism consisting of 38 species and 337 elementary reactions is implemented through the spray flamelet model enabling the prediction of pollutant emission in spray flames. Good agreement with the experimental data is found for the gas temperature. The numerical predictions for the liquid-phase temperature are in reasonable agreement with the experimental data. The flame structure with two reaction zones is compared with other spray flames, and it is analyzed with the help of the experimental and numerical results. The formation mechanism of such a structure is revealed.

We would like to thank the Deutsche Forschungsgemeinschaft for funding of this project through the International Graduate College 710 “Complex Processes: Modeling, Simulation and Optimization,” the GRK 1114 “Optische Messtechniken für die Charakterisierung von Transportprozessen an Grenzflächen,” and SFB 359 “Reactive Flows, Diffusion and Transport.” H.-W. Ge thanks National Natural Science Foundation of China for part financial support under Grant No. 50506028.

Additional information

Notes on contributors

H.-W. Ge

Current affiliation for H.-W. Ge is Engine Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.