2,297
Views
107
CrossRef citations to date
0
Altmetric
Original Articles

A Model of AP/HTPB Composite Propellant Combustion in Rocket-Motor Environments

, &
Pages 2143-2169 | Published online: 21 Oct 2008
 

Abstract

A comprehensive theoretical/numerical model for treating AP/HTPB composite-propellant combustion in a rocket-motor environment is presented. The formulation takes into account the conservation equations in both the gas and condensed phases, and accommodates finite-rate chemical kinetics and variable thermophysical properties. The processes in the two phases are coupled at the surface to determine the propellant burning behavior. An asymptotic analysis based on a large activation-energy approximation for the condensed-phase decomposition is applied to help resolve the combustion wave structure in the interfacial layer. A simplified global reaction is employed to characterize the final diffusion flame between the decomposition products of AP and the pyrolysis products of HTPB. Only laminar flows are considered here, to avoid complications arising from turbulence. A detailed parametric study is conducted on the gas-phase flame structures of AP/HTPB composite propellants. The dependence of burning rate, flame stand-off distance, and heat-release distribution on AP particle size, chamber pressure, and gas-phase reaction rates is studied systematically. The phenomenon of erosive burning due to the strong crossflow in a rocket-motor environment is also examined.

This work was sponsored partly by the Pennsylvania State University and partly by the California Institute of Technology Multidisciplinary University under ONR Grant No. N00014-95-1-1338, with Dr. Judah Goldwasser as the Program Manager.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.