249
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Prediction and Measurement of the Product Gas Composition of the Ultra Rich Premixed Combustion of Natural Gas: Effects of Equivalence Ratio, Residence Time, Pressure, and Oxygen Concentration

, , &
Pages 433-456 | Received 31 Mar 2008, Accepted 23 Oct 2008, Published online: 09 Jun 2010
 

Abstract

The ultra rich combustion (partial oxidation) of natural gas to hydrogen and carbon monoxide is theoretically and experimentally investigated. The effect of the process parameters equivalence ratio, residence time, pressure, and composition of the oxidizer is explored. Computations are performed with the use of the chemical kinetics simulation package CHEMKIN. First, the ultra rich combustion process is modeled as a freely propagating flame in order to establish the rich flame propagation properties. An Arrhenius correlation of the laminar flame speed with the adiabatic flame temperature is found with activation temperature 20,000 K. Subsequently, perfectly stirred reactor (PSR) computations were performed. From these, it is concluded that optimal natural gas conversion to hydrogen and carbon monoxide requires a residence time of at least 50 ms and, depending on residence time, an equivalence ratio between 2 and 4. To reach chemical equilibrium in ultra rich mixtures, the residence time is very long (> 1000 ms). The model predictions are validated by experiments on ultra rich combustion of natural gas by means of air enriched to 40% oxygen concentration at up to 3 bar and 300 kW. The effect of equivalence ratio at residence time 50 ms was investigated. Good comparison was found between measurements and model predictions on carbon monoxide, hydrogen, and the soot precursor acetylene. It can be concluded that the model provides reliable information on product gas concentrations as a result of ultra rich combustion of natural gas.

This research project was supported by PiT, the Twente Research School for Process Technology and Senter, an Agency of the Dutch Ministry of Economic Affairs, grant EDI 01015.

Notes

The predictions given are on basis of 50 ms residence time in a stirred reactor (CHEMKIN PSR code) and on basis of the 50 ms residence time in a premixed laminar flame (CHEMKIN PREMIX code). All predicted values have been recalculated as dry mole fractions in order to be comparable with the measured ones. Operating conditions for predictions: p = 6 bar, fuel equiv. ratio = 3 for PSR and EQUIL and 3.1 for PREMIX.

Additional information

Notes on contributors

Bogdan A. Albrecht

Bogdan A. Albrecht is presently at Advanced Engineering Engines, DAF Trucks N.V., Hugo van der Goeslaan 1, P.O. Box 90065, 5600 PT Eindhoven, The Netherlands.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.