256
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Stability Characteristics of Turbulent Hydrogen Dilute Diffusion Flames

&
Pages 756-781 | Received 13 May 2008, Accepted 26 Feb 2009, Published online: 29 Apr 2009
 

Abstract

Diffusion flame combustion of high-hydrogen fuels in land-based gas turbine combustors may include dilution of the fuel with inert gases and high velocity fuel injection to reduce NOx emissions. Stability regimes of such combustors are investigated in this study by examining turbulent dilute diffusion flames of hydrogen/nitrogen mixtures, issuing into a quiescent environment from a thin-lipped tube. This study has revealed two distinctly different types of lifted flames: lifted, laminar-base flames, for which liftoff heights vary from 1 to 3 jet diameters above the jet exit and are controlled by differential diffusion, and lifted, turbulent-base flames that stabilize much further downstream and are dominated by turbulent processes. In addition, stability limits governing the detachment or reattachment of the flame to the lip of the burner are examined, as well as the limits governing transitions between the two types of lifted flames and transition from these lifted flames to blowout.

The authors would like to thank Fred White for his assistance in the setup of the atmospheric pressure combustor. The support of the U.S. DOE Turbines program and ORISE is also gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.