590
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

A Zero-Dimensional Combustion Model with Reduced Kinetics for SI Engine Knock Simulation

&
Pages 828-852 | Received 17 Mar 2008, Accepted 04 Mar 2009, Published online: 27 May 2009
 

Abstract

High load performance and fuel economy of gasoline engines are limited by knocks. Such limitations are becoming worse when the engine is heavily super-charged for high BMEP outputs. Spark ignition timing retardation has been an efficient method to avoid knock but results in reduced engine performance and poor fuel economy. A better understanding of knock, which could be used to optimize the engine design, and ignition timing optimization in particular, is important. In this research, a simulation model for SI engine knock has been developed. The model is based on a three-zone approach (i.e., unburned, burning, and burned zones). Tanaka's reduced chemical kinetic model for a commercial gasoline fuel with an RON of 95 has been modified and applied in both burned and unburned zones incorporated with the LUCKS (Loughborough University Chemical Kinetics Simulation) code. Both post-flame heat release and pre-flame autoignition have been simulated. The burning zone uses equilibrium combustion thermodynamic models. The simulated results have been validated against experimental results, and good agreements have been achieved.

Notes

Note. A = units mole-cm-sec-K, E = units cal/mole.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.