197
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of Two-Equation Turbulence Models in Simulation of a Non-Swirl Coal Flame in a Pilot-Scale Furnace

, , &
Pages 954-983 | Received 10 Jul 2008, Accepted 26 Mar 2009, Published online: 06 Jul 2009
 

Abstract

The capability of six two-equation Reynolds-averaged Navier-Stokes (RANS) models for simulation of a non-swirl coal flame in a pilot-scale furnace has been investigated. These turbulence models—the standard k-ϵ model, re-normalization group (RNG) k-ϵ model, modified k-ϵ model, Wilcox k-ω model, Menter k-ω model (also called BSL model), and Shear-stress transport (SST) model—are assessed with the use of measured gas phase velocity, temperature, oxygen, and carbon dioxide volume fraction data from the literature. Predictions of the standard k-ϵ model, RNG k-ϵ model, BSL, and SST model are generally in good agreement with the experimental data. The Wilcox k-ω model generally overpredicts O2 volume fraction and underpredicts CO2 volume fraction. The modified k-ϵ model yields results that have large discrepancies from measurements.

Acknowledgments

The financial support provided by the Victorian Government Department of Primary Industries under the ETIS Program is gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.