250
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and Numerical Studies on Methane/Air Combustion in a Micro Swiss-Roll Combustor

, , &
Pages 1707-1717 | Received 15 Oct 2009, Accepted 02 Apr 2010, Published online: 27 Oct 2010
 

Abstract

To understand effects of an air groove on working characteristics of micro Swiss-roll combustors, combustion of premixed CH4/air is conducted in 2 micro Swiss-roll combustors, one with an air groove and the other without. Experimental results show that stable combustion of premixed CH4/air in 2 combustors can be achieved and the flame is kept in combustor's center. An air groove can extend flammable limit of the combustor and make it work at a larger excess air coefficient and a lower methane flow rate. Furthermore, it increases the radial surface temperature gradient on outer wall of the combustor. Additionally, the combustor with an air groove is numerically simulated. Numerical results indicate that hot combustion products play a strong role in heating incoming mixtures. On one hand, it makes premixed flame surface inclined across inlet channel; on the other hand, it makes flame position vary with flow velocity, excess air coefficient and heat loss to the environment.

ACKNOWLEDGMENTS

This work is supported by the PhD Programs Foundation of Ministry of Education of China (No. 200800071020) and the Excellent Young Teacher Foundation of Beijing Institute of Technology under Contract 2008Y0210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.