8,208
Views
73
CrossRef citations to date
0
Altmetric
Original Articles

Experimental Study on the Effect of Swirler Geometry and Swirl Number on Flame Describing Functions

, , &
Pages 704-717 | Received 11 Aug 2010, Accepted 03 Nov 2010, Published online: 04 Apr 2011
 

Abstract

This paper deals with the response of swirling flames submitted to acoustic velocity disturbances when the rotation of the flow is produced by an axial or a radial swirler. The objective is to compare responses obtained in these two cases. The response is characterized in terms of the flame describing function (FDF), which generalizes the classical flame transfer function concept by considering not only the frequency but also the amplitude of the velocity disturbances. Results indicate that for both types of swirlers, the dynamics is essentially similar for the gains and the phases of the FDF. It is also found that the swirl number value markedly influences the gain response. The characteristic shape of the FDF, with a local minimum and maximum, are found in both cases and these features correspond to mechanisms already described previously: swirl number fluctuations and vortex rollup of the flame. Swirl number fluctuations are induced by the interaction of the incident acoustic disturbances with the swirler. This generates in the two cases a transmitted acoustic wave and a convective vorticity wave. This last wave is characterized by azimuthal velocity perturbations. The mode conversion process giving rise to the latter type of disturbance was already demonstrated in the case of an axial swirler. It is here examined in the radial swirler geometry. It is shown that the mode conversion processes in the two geometries are quite similar and that they produce similar effects on the flame dynamics and response.

ACKNOWLEDGMENTS

This study is part of the MICCA project supported by the Agence Nationale de la Recherche (contract number ANR-08-BLAN-0027-01). The authors would like to thank C. Hirsch from TU München for fruitful discussions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.