376
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

A Numerical Modeling Study of Ignition of Single Coal Particles Under Microgravity Conditions

, , &
Pages 1221-1235 | Received 21 Jan 2011, Accepted 16 May 2011, Published online: 03 Oct 2011
 

Abstract

The ignition characteristics of single coal particles under microgravity conditions were investigated by means of numerical modeling, considering the effects of particle size, ambient temperature, and oxygen concentration as well as intraparticle thermal conduction. The predicted particle surface temperature and flame displacement agreed well with the experimental data observed under microgravity. It was revealed that when the coal particle size was greater than 100 µm, the intraparticle temperature distribution becomes significant. The primary ignition mechanism was heterogeneous for smaller particles but homogeneous for larger particles. The transition diameter for the ignition mechanism to switch from heterogeneous to homogeneous was found to depend on the ambient temperature, O2 concentration, and whether the intraparticle thermal conduction was considered or not. At a relatively low ambient temperature of 1123 K in air, the predicted transition diameter changed from 800 µm to 600 µm when intraparticle thermal conduction was considered. However, at 1500 K, the intraparticle thermal conduction had little effect on the ignition temperature and the transition diameter predicted was about 700 µm. It was shown that homogeneous ignition occurred when O2 concentration was low while heterogeneous ignition occurred when O2 concentration was high. It was also shown that the homogeneous ignition temperature was slightly lower than the heterogeneous ignition temperature. At high O2 concentrations, the predicted ignition temperature and ignition delay decreased with increasing O2 concentration, consistent with the literature findings, including those from the authors own previous studies. However, at low O2 concentrations, the predicted ignition temperature and ignition delay were less variant. The discrepancies of the predicted transition diameters for the isothermal particles and those with intraparticle thermal conduction considered were attributed to the heating rate and the influence of volatile matter release.

ACKNOWLEDGMENTS

This research is supported under Australian Research Council's Discovery Projects funding scheme (project number DP0988036) and China's National 863 Project (2007AA05Z303).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.