221
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Determination of Woody Fuel Flame Properties by Means of Emission Spectroscopy Using a Genetic Algorithm

, , , , , , & show all
Pages 579-599 | Received 29 May 2012, Accepted 13 Sep 2012, Published online: 29 Mar 2013
 

Abstract

Because radiation from flames is often the dominant mechanism for wildfire spread, detailed information on flame properties is required. The proposed procedure combines a spectrally resolved radiation model for simulating the line-of-sight infrared emission intensity and spectroscopy data and uses a genetic algorithm (GA) to determine a set of flame properties, allowing optimal agreement between model and outdoor experiments. GA calibration and sensitivity analysis were conducted using well-defined reference flames. The combined GA/radiation model was used with emission data to estimate the effective properties of flames from the combustion of woody fuel beds from 0.5 to 4 m in thickness. Experimental results show that the contribution of soot particles to flame emission increases with flame thickness. The GA was found to be robust and efficient in providing relevant flame properties from line-of-sight intensities on the infrared spectrum of radiation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.