422
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Investigations on the Formation of Planar Flames in Mesoscale Divergent Channels and Prediction of Burning Velocity at High Temperatures

, &
Pages 645-660 | Received 29 Aug 2012, Accepted 09 Oct 2012, Published online: 29 Mar 2013
 

Abstract

Flame stabilization studies of preheated mesoscale channels of various divergent angles and aspect ratios are reported in this article. Flame propagation modes such as planar flame and negatively and positively stretched flames were observed for a range of mixture flow rates and equivalence ratios. The present investigation is focused on the formation of the planar flames in these channels. The effect, of various parameters such as channel aspect ratio, divergence angle, and heating rate on the formation of planar flames and thereby on the prediction of laminar burning velocity of various fuel–air mixtures at high temperatures are discussed. Detailed investigations show that stretch-free planar flames can be stabilized in high-aspect-ratio channels with linear velocity and temperature gradient in the axial direction. Detailed numerical simulations confirm a negligible effect of heat loss on the burning velocity due to external preheating of the channel walls. Apparatus independence of the burning velocity is confirmed through experiments in channels of various aspect ratios and divergence angles for various fuel–air mixtures. The proposed method of burning velocity measurement at high temperature is quite promising.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.