262
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Flame Inhibition by CF3CHCl2 (HCFC-123)

, , &
Pages 792-814 | Received 07 Aug 2013, Accepted 20 Dec 2013, Published online: 20 May 2014
 

Abstract

A kinetic model is suggested for hydrocarbon/air flame propagation with addition of hydrochloroflurocarbon (HCFC) fire suppressant, encompassing the combined chemistry of fluorine- and chlorine-containing species. Calculated burning velocities using the kinetic model are in good agreement with available experimental burning velocity data for CF3Cl, CF2Cl2, or CFCl3 added to CO/H2/O2/Ar flames. The agent CF3CHCl2 is more effective than C2HF5, and reaction pathway analysis shows that the inhibition effect of chlorine reactions is greater than that of fluorine. The main reactions of the chlorine inhibition cycle are H+HCl=H2+Cl, OH+HCl=H2O+Cl, Cl+CH4=HCl+CH3, Cl+HCO=HCl+CO, and Cl+CH2O=HCl+HCO. The inhibition effect of CF3CHCl2 is largely the result of competing reactions of chlorine-containing species with hydrogen (and other radical pool) species, decreasing the rate of the chain-branching reaction H+O2, with additional effects from substitution of the reactive chain-branching radicals for less reactive fluorine- and chlorine-containing radicals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.