513
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

High Pressure Ignition and Combustion of Aluminum Hydride

, &
Pages 1335-1350 | Received 23 Sep 2013, Accepted 02 Apr 2015, Published online: 26 May 2015
 

Abstract

An experimental study was conducted to determine the high pressure ignition characteristics of α-aluminum hydride. Aluminum hydride particles were heated on a platinum filament at heating rates of approximately 1 × 105 K/s in a pressure vessel for pressures ranging up to about 7 MPa, in order to quantify the ignition temperature and to observe the ignition process. Experiments were conducted in air, argon, and nitrogen as the pressurizing environment. This study revealed that the dehydrogenation of aluminum hydride is not a function of pressure under the conditions tested. In addition, ignition temperatures were found to be approximately linearly related to pressure until pressures exceeded about 0.4 MPa, at which point they remained constant through the highest pressures tested. High speed imaging of the ignition process showed a dramatic change in the ignition behavior for pressures above 0.4 MPa, corresponding to what we believe is a threshold for H2/air autoginition or perhaps even an explosion limit. We find that the combustion behavior of aluminum hydride particles shared many traits similar to what has been previously observed with aluminum particles including a diffusion flame surrounding the particle, spinning, jetting, and explosions/fragmentation. Quenched particles also showed clear evidence of gas phase combustion with parent particles containing nanofeatures, which were condensed from the gas phase. The results of this study provide additional understanding on the ignition and combustion process of aluminum hydride at extreme conditions, which may be useful in modeling efforts or in the development of solid propellants.

Additional information

Funding

This research effort was supported through the ILIR program at the Naval Surface Warfare Center–Indian Head Division (NSWC-IHD) and the Army Research Office.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.