142
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effects of Combustion-Generated Nanoparticles on Cellular Membranes

Pages 769-775 | Received 06 Nov 2015, Accepted 19 Nov 2015, Published online: 04 May 2016
 

ABSTRACT

In the environment, the process of combustion is the dominant pathway through which mankind continuously injects particles into the atmosphere at the present time. The most direct and serious risk related to these emissions is the direct absorption of these particles into the living systems of humans and animals through the process of respiration, especially in more urban environments. Little is known about the potential of low-level exposures to alter key biophysical functions, such as membrane form and function. This study employs molecular dynamics simulations to reconstruct the free energy landscapes of the mechanisms of entry of nanoparticles into biological cells. Specifically, we investigate the behavior of two nanoparticles produced in combustion conditions with different amphiphilic properties to assess the effect of chemical composition on the interactions with cellular membranes. Free energy calculations of nanoparticles interacting with a lipid bilayer composed of dimyristoylphosphatidylcholine and cholesterol show that the presence of hydroxyl groups on the nanoparticle makes the region where the lipids’ heads are solvated by water the most favorable position for these species. The hydrophobic nanoparticle shows a strong affinity for the center of the membrane. This study shows the importance of surface composition and suggests different mechanisms of interactions of nanoparticles with cellular membranes.

Additional information

Funding

This work was funded in part by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Grant no. DE-SC0002619.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.