350
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Turbulence on Ignition of Methane–Air and n-Heptane–Air Fully Premixed Mixtures

, , ORCID Icon, &
Pages 452-470 | Received 12 Apr 2017, Accepted 28 Oct 2017, Published online: 29 Nov 2017
 

ABSTRACT

We performed direct numerical simulations (DNS) for the two-dimensional (2D) turbulent ignition of ultra-lean methane–air and n-heptane–air mixtures with a high exhaust gas recirculation (EGR) rate at high pressure to determine the ignition criteria and ignition delay time. We defined an initial high-temperature region as an ignition kernel and conducted one-dimensional preliminary DNS to determine the ignition criteria in terms of the ignition source energy and the thermal conduction from the ignition kernel during the induction period. Additionally, we analyzed the 2D DNS results to clarify the influence of the turbulent strain rate on the ignition delay time and the mechanism by which the turbulence influences the establishment of the ignition kernel. We observed that the distribution of eddies and the strain rate in the high-temperature region influences the success or failure of the ignition process and, therefore, the ignition delay time. The ignition delay time increases proportionally to the square of strain rate averaged in the high concentration region of the intermediate species during the induction period. This suggests that the ignition in a turbulent field is based on the balance between the influence of a locally averaged strain rate in the preheating region and the chemical (flame) time scale. Based on these observations, a simple model for the ignition delay time was constructed based on the mean strain rate in the high concentration region of the intermediate species during the induction period. The strain rate averaged in the high concentration region of the intermediate species was normalized by using the laminar burning velocity and the laminar thermal flame thickness. Additionally, the ignition delay time was normalized by the ignition delay time of the corresponding laminar case, yielding the same ignition model/criterion for both examined fuels, which could be extended to other mixtures.

Acknowledgments

The authors acknowledge the support of Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.