624
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Thermal decomposition and combustion characteristics of HTPB-coarse AP composite solid propellants catalyzed with Fe2O3

&
Pages 1614-1629 | Received 04 Sep 2017, Accepted 30 Mar 2018, Published online: 09 Apr 2018
 

ABSTRACT

Many factors and their mutual interactions induce complexity in the combustion of hydroxyl-terminated polybutadiene (HTPB)–ammonium perchlorate (AP)–ferric oxide (Fe2O3) composite solid propellant (CSP). Among them, we investigated exothermicity of coarse AP decomposition for thermal decomposition and high-pressure combustion of HTPB-AP. Thermal decomposition of coarse AP was characterized by high twin-peak exothermicity, while HTPB-AP decomposed in single-stage at 329°C. Coarse AP improved thermal decomposition due to significant first-stage exothermicity. High exothermicity and predominance of coarse AP dominate thermal decomposition of CSP. Fe2O3 catalyzed decomposition of AP by shifting second exothermic peak to lower temperature and releasing more heat. Fe2O3 increased the burning rate of HTPB-AP and the highest burning rate was achieved for 1 wt % nano-Fe2O3 of average size 4 nm. Similar results for milli- (average size 200 μm) and micro-Fe2O3 (average size 2 μm) were recorded at higher concentrations. Exothermicity of coarse AP and catalytic activity of Fe2O3 on AP speed up subsurface processes and help in the enhancement of burning rates.

Acknowledgments

The authors thank Dr C.R. Chodankar, Dr N. Yadav, and the staff of Rocket Propulsion Laboratory, Department of Space Engineering and Rocketry, Birla Institute of Technology, Ranchi, for their help during the course of work.

Supplemental Material

Supplemental data for this article can be accessed here.

Additional information

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.