126
Views
0
CrossRef citations to date
0
Altmetric
Articles

Oscillatory Burner-Attached Diffusion Flame in a Viscous Vortex

&
Pages 2188-2202 | Received 19 Apr 2018, Accepted 02 Jul 2018, Published online: 30 Jul 2018
 

ABSTRACT

A method for mathematically solving the oscillatory infinite reaction rate diffusion flame is extended to the case where the oscillating convective coflow is either inside of, or adjacent to, a viscous vortex. The neglect of streamwise diffusion coupled with the restriction to infinite rate chemistry produces a Burke-Schumann boundary layer flame. The mathematical transformation, which does not require a priori restriction to small coflow oscillations, renders the transient oscillatory problem equivalent to a steady-state problem that can be solved mathematically and numerically evaluated to a high degree of accuracy. Flow fluctuations that are large fractions of the initial flow field are described exactly. Features of the flame response are examined without recourse to detailed time-dependent numerical simulations. There is no need to perform any small-perturbation analyses. The method is applied to examine the influences of the bulk inflow speed, the bulk inflow oscillation rate, and the interaction of the inflow and its oscillation rate with the viscous vortex.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.