169
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation of reattachment behavior of turbulent lifted diffusion jet flames induced by repetitive DC electric pulse discharges with conditional PIV

, &
Pages 726-744 | Received 04 Nov 2017, Accepted 17 Jul 2018, Published online: 20 Dec 2018
 

ABSTRACT

Among the recently prevailing flame stabilization enhancement by electric field and plasma, repetitive DC electric pulse discharge is applied to a turbulent lifted diffusion jet flame to improve the reattachment in this study. The main objectove of this study is to characterize experimentally the stability and the reattachment behaviors of lifted flames under the electric pulse effect with a proposed electrode configuration. The effects of pulse repetition frequency (PRF) and voltage polarity on flame are investigated. The reattachment velocity increases by increasing PRF. The time history of flame base trace and absolute flame speed with positive-voltage-pulse are illustrated. The electric corona discharge is observed during upstream propagation process, and its role in flame acceleration is discussed. In addition, 2D-PIV measurement conditioned by high speed sequence images is conducted. Finally, the conditionally instantaneous flame propagation speed is enhanced and exceeds 3 times that of stoichiometric laminar flame speed, which leads to lifted flame reattachment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.