171
Views
2
CrossRef citations to date
0
Altmetric
Articles

Investigation of the Jet-Flame Interaction by Large Eddy Simulation and Proper Decomposition Method

&
Pages 956-978 | Received 04 Oct 2018, Accepted 08 Feb 2019, Published online: 27 Feb 2019
 

ABSTRACT

Large eddy simulation (LES) results are presented for a premixed methane/air turbulent flame arising from a confined laboratory-scale single-nozzle burner. The jet issuing from an off-centered nozzle facilitates the development of a large-scale, dominant lateral recirculation zone that stabilizes the flame. A self-sustained jet oscillation is present, which intermittently causes extreme flame fluctuations such as blowout and relight events in the bottom section of the combustion chamber. The combined probability density function transport approach with the Eulerian stochastic fields method is used to numerically investigate the influence of this jet oscillation on combustion stability at the operating condition near lean blowout. The general structure of the flow, including the formation of the recirculation zones depending on the location of the flapping jet, is well-reproduced together with the mean and fluctuating velocity profiles. The behavior of the jet oscillation is investigated using a popular decomposition method known as proper orthogonal decomposition (POD) based on the predicted three-dimensional flow fields. Thanks to POD, the evolution of the simulated flame structure featuring a pronounced flame fluctuation is compared against that experimentally measured according to the phase angles of the low-order modeled jet motion. The absence of the most dominant coherent structure at a single frequency is due to a feedback mechanism between the jet oscillation and combustion process. The simulation shows that a low-frequency jet flapping causes the flame blowout and flashback in the bottom section of the combustor and a stable flame persists as long as the jet flapping rate exceeds a critical value.

Acknowledgments

We would like to express our sincere gratitude to Dr. Zhiyao Yin and Dr. Wolfgang Meier from the German Aerospace Centre (DLR) for sharing the experimental database with us.

Additional information

Funding

The authors would like to acknowledge the financial support from EPSRC under grant EP/M015300/1 as well as the UKCTRF for providing the computational access to the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.