259
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A comparison of partially premixed methane/air combustion in confined vane-swirl and jet-swirl combustors

, , &
Pages 212-231 | Received 22 Jan 2021, Accepted 11 Jun 2021, Published online: 27 Jun 2021
 

ABSTRACT

The characteristics of partially premixed methane/air combustion in aconfined geometry are experimentally investigated in two types of swirling flows introduced by using avane swirl (VS) and tangential jet swirl (TJS), respectively. To make acomparison, acoaxial jet (CJ) burner is also employed. The fuel and air are individually injected through their own inlets, partially premixed in amixing chamber, and then burned in aconfined cylindrical combustor. In VS and CJ combustors, the fuel is axially injected from the center; while in the TJS combustor the fuel is injected through either acentral inlet or tangential inlet. The geometry swirl number varies from 0 to 3.38. The flame structures, extinction limits, temperature distribution, NOx, CO concentrations and flow velocities are systematically examined to compare the flame characteristics. The detailed observations show that the swirl plays asignificant role in the fuel mixing, flame stabilization, and flame structures. As fuel is axially injected, ayellow flame is established at low airflow rate regardless of the swirl number values. As the airflow rate increases, ablue flame is obtained; the flame extinguishes at avery low global equivalence ratio of 0.25 in the VS and TJS combustors. When fuel and air are tangentially injected, ablue flame similar to premixed one is established; asteady flame is obtained from lean to rich limits (equivalence ratio of 0.5 to 1.68). The temperature is distributed more uniformly in the high swirl TJS combustor, particularly for the one adopts pure tangential jets of fuel and air, in which the measured NOx and CO concentrations are the lowest. The differences were mainly attributed to different mixing modes.

Acknowledgments

This study is supported by National Natural Science Foundation of China (No.91641204 and No.51676016).

Conflicts of interest

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [51676016,91641204].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.