229
Views
161
CrossRef citations to date
0
Altmetric
Original Articles

An Asymptotic Analysis of Unsteady Diffusion Flames for Large Activation Energies

&
Pages 95-117 | Received 17 Sep 1974, Accepted 15 Oct 1975, Published online: 07 May 2007
 

Abstract

The limit of large activation energy is studied for the process of simultaneous mixing and chemical reaction of two reactants undergoing a one-step irreversible Arrhenius reaction. Consideration is restricted to problems of the evolution type—like unsteady mixing and boundary-layer combustion—for which the solution is uniquely determined in terms of the initial conditions. The continuous transition from the nearly-frozen to the near-equilibrium regimes is described. The analysis uncovers the existence of: (i) An ignition regime, in which a mixing layer develops with only minor effects of the chemical reaction, until a thermal runaway occurs somewhere within the mixing region; at this location chemical equilibrium then is established rapidly, (ii) A deflagration regime, in which premixed flames originate from the ignition point and move through the mixing region to burn completely the reactant not in excess. And (iii) a diffusion-flame regime, in which a thin diffusion flame, that is established when the deflagration wave crosses the surface where the reactants are present in stoichiometric proportions, consumes the excess reactants that could not be burned by the premixed flame. This is accomplished by a process in which the reactants diffuse through a thick layer of reaction products. There exists experimental evidence to support this rather complex picture deduced theoretically.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.