32
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Simultaneous Multiline Emission Absorption Measurements in Optically Thick Turbulent Flames

&
Pages 1-21 | Received 22 Feb 1991, Accepted 06 May 1991, Published online: 06 Apr 2007
 

Abstract

Simultaneous transient emission/absorption measurements at five wavelengths in strongly radiating, optically thick, turbulent diffusion flames burning acetylene in air were completed. The data were processed to obtain CO2, mole fractions, temperatures and soot volume fractions spatially resolved to the estimated local integral length scale of mixture fraction fluctuations. Temperatures and soot volume fractions based on emission intensities showed strong negative correlation due to radiative cooling effects. Probability density functions of soot volume fractions conditioned on CO2, mole fractions showed similarities with position. However, probable effects of negligible diffusivity of soot particles were observed. Probability density functions of soot volume fractions conditioned on both CO2, concentrations and temperature illustrate the important role of radiative heal transfer in determining the flame structure. A multivariate stochastic analysis resulted in good predictions of radiation intensities.

Additional information

Notes on contributors

J. P. GORE

Present address: School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.