32
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A Theoretical Study of Combustion of Nonspherical Particles

&
Pages 9-26 | Received 02 Dec 1992, Accepted 08 Jun 1992, Published online: 17 Apr 2007
 

Abstract

A theoretical study is carried out of the combustion of nonspherical carbonaceous particles in the regime of shrinking core reaction. The first problem addressed is the calculation of the pseudosteady temperature and oxidation rate for a particle of given shape. This problem involves the solution of the external diffusion and heat conduction equations with the reaction entering as a boundary condition over the particle surface. Using the boundary integral method, the problem is reformulated as a system of two coupled integral equations which are solved numerically by suitable discretization. The complete transient problem addressing the evolution of particle shape and particle temperature during burnout is similarly formulated by the boundary integral method and solved numerically. Over a broad range of parameters, the pseudosteady particle temperature and rate of oxidation are very nearly equal to those of spherical particles of equal volume and surface area respectively. The transient solutions obtained for parameters typical of pulverized combustion show that during burnout the particle becomes increasingly nonspherical. As expected, nonspherical particles burn faster than spherical particles of the same initial volume, but the difference in burnout times is less than 20% for initial aspect ratios between one and three.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.