81
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of Laminar Methane-Air Flames using Automatically Simplified Chemical Kinetics

, , , &
Pages 3-16 | Received 01 Mar 1996, Published online: 23 Jun 2010
 

Abstract

The method of intrinsic low-dimensional manifolds to simplify chemical kinetics is applied to laminar methane-air flames. The procedure is based on a mathematical analysis of the reaction system. Neither steady state assumptions for some species, nor partial equilibrium for reactions have to be specified explicitly. The only requirements to the scheme are a detailed reaction mechanism and the number of degrees of freedom desired for the simplified scheme. All necessary information on the ther-mechanical state (species concentrations, temperature, density, etc.) is then given as function of a small number of reaction progress variables, associated with the degrees of freedom. Therefore, less equations (for two or three reaction progress variables instead of for 34 species in case of CH4) have to be solved, thus drastically reducing the computational effort compared to calculations using detailed chemistry. Subsequent use of a tabulation procedure, where all information is stored, guarantees an efficient use in various CFD applications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.