116
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Flame Temperature Predictions and Comparison with Experiment in High Flow Rate, Fuel-Rich Acetylene/Oxygen Flames

Pages 383-398 | Received 12 Jul 1996, Published online: 06 Apr 2007
 

Abstract

Chemical models using complex gas-phase chemistry in one-dimensional flows have predicted some acetylene/oxygen flame temperatures which exceed the adiabatic flame temperature by over 800 K under fuel-rich, high flow rate conditions. In this work, laser-induced fluorescence was applied to measure the actual temperatures in these flames and to compare them with the predictions of a 1-D model. While the model predicts maximum flame temperatures which are typically within 100 K of the experimentally determined temperatures under low flow rate conditions, at higher flow rates, the actual maximum flame temperature rises much more slowly with increasing flow rate than predicted by the model. The discrepancy between model and experiment reaches 700 K at the highest flow rates studied. In addition, the experiments suggest that there may be important structural differences between the model-predicted and the experimentally observed flames.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.