1,962
Views
347
CrossRef citations to date
0
Altmetric
Original Articles

Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons

&
Pages 427-449 | Received 20 Jul 1998, Accepted 06 Oct 1998, Published online: 05 Apr 2007
 

Abstract

Laminar flame speeds determined by using the counterflow twin flame configuration were compared for various C1 to C8 hydrocarbons, including alkanes, alkenes, alkynes, aromatics, and alcohols. The data were compared over an extensive range of equivalence ratios at room temperature and atmospheric pressure. The comparison shows that the laminar flame speeds of normal alkanes are close throughout the entire range of equivalence ratios studied, except for methane whose flame speeds are consistently lower. The more unsaturated the molecule the higher the flame speed for fuels having the same carbon number in the order of alkanes < alkenes < alkynes. Methyl substitution for hydrogen or branching reduces the flame speeds for both alkanes and alkenes. The flame speeds of large saturated cyclic species (cyclohexane and cyclopentane) are close to those of their normal alkane analogs.

Additional information

Notes on contributors

C.K. LAW

Corresponding author, e-mail: [email protected]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.