95
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

A Model-based Self-tuning Controller forThermoacoustic Instability

, , , &
Pages 213-240 | Received 09 Apr 1998, Published online: 06 Apr 2007
 

Abstract

Active Control of thermoacoustic instabilities in continuous premixed combustion processes is being increasingly investigated for operating at lean low NOx conditions. Recently, we have developed a model-based approach for active control design which accounts for the underlying acoustics, heat release dynamics, and sensor and actuator dynamics. While this model captures a number of the dominant dynamic features of a premixed laminar combustor, there are a number of uncertainties associated with it as well. In this paper, we study the sensitivity of this model with respect to parametric uncertainties, and the efficacy of a fixed control design for suppressing pressure oscillations. We show that under certain conditions, the fixed controller is inadequate and present a self-tuning controller which is capable of delivering the desired performance in the presence of these uncertainties. The controller proposed is based on a rigorous analytical foundation, and is shown through simulation results to lead to better performance than corresponding fixed controllers. Adaptive algorithms based on the LMS-filter are shown to result in numerical instabilities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.