100
Views
8
CrossRef citations to date
0
Altmetric
Erratum

Reaction Zone Structure and Scalar Dissipation Rates in Turbulent Diffusion Flames

&
Pages 17-55 | Received 13 Feb 1996, Accepted 14 Aug 1997, Published online: 25 Apr 2007
 

Abstract

Images of mixture fraction, temperature, scalar dissipation rates and OH concentrations in turbulent diffusion flames of methane-air and hydrogen-carbon dioxide are presented. The images are derived from Rayleigh scattering, fuel Raman scattering and OH-LIF. The images reveal that the reaction zones in these flames are strongly affected by the turbulence within them and that they become broadly distributed as the velocity is increased. The reaction zone width, as estimated from the measured OH profiles, is found to increase with the increase in jet Reynolds number of the flames. Local turbulence affects the OH profiles and causes a variation in the OH concentrations with little apparent variation in the corresponding mixture fraction and temperature images. This is seen in flames which are far from blow off and is not thought to be a local extinction effect but the direct influence of turbulence in the reaction zone. High scalar dissipation rates are not measured in the reaction zone where unburnt samples are encountered. Local nonburning may be due to a lack of ignition of premixed fluid or to local quenching by large eddy entrainment of cold fluid. The measured scalar dissipation rates do not increase significantly with an increase in the jet velocity. This may be due to the decrease in the gas diffusivity with decreasing temperature which offsets the increase in the spatial mixture fraction gradient. The scalar dissipation rates are believed to reduce in regions of local nonburning due to the associated reduction in the temperature.

Notes

Corresponding author. E-mail: [email protected]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.