103
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Batch‐Determined Elements Release from Wood Ash Mixed with an Acidic Forest Soil Sample

&
Pages 295-311 | Received 19 Mar 2004, Accepted 27 Apr 2005, Published online: 20 Aug 2006
 

Abstract

A serial batch leaching experiment was carried out to evaluate the release of elements from wood ash mixed with a strongly acidic forest soil sample. Wood ash application resulted in increased leachate pH, dissolved organic carbon (DOC), and electrical conductivity (EC). Increasing application of wood ash increased cumulative release of inorganic carbon (IC), chloride (Cl), nitrate (NO3), sulfate (SO4), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), manganese (Mn), phosphorus (P), and copper (Cu). Release of NO3, P, iron (Fe), aluminum (Al), Cu, and lead (Pb) continued. Large amounts of DOC, K, Ca, and SO4 were mobilized. Inorganic C, Fe, and Mg were released in moderate quantities. Manganese, Na, Al, Cl, and NO3 were released in limited amounts. Amounts of leached P, Pb, and Cu were lower. The mixed order equation adequately described the release of elements in the soil‐ash mixture. Accumulation of elevated amounts of trace elements does not appear to be a problem when higher wood ash rates are avoided. Wood ash should be applied in split application to avoid short‐term concentrated alkaline and salty conditions that could interfere with plant growth.

Acknowledgments

This work was conducted within Alexander von Humboldt research fellowship programme and was carried out at Institut für Bodenkunde of Universität Bonn in Germany. We thank the Alexander von Humboldt Foundation and the Institut für Bodenkunde for their support and assistance to this study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.