328
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Methods for Estimating Phytoavailable Metals in Soils

Pages 1087-1105 | Received 18 Apr 2007, Accepted 23 Sep 2008, Published online: 01 Apr 2009
 

Abstract

Total concentration is not a reliable indicator of metal phytoavailability in soils. There is a dearth of single universal multielement methods with critical value. Therefore, this study was implemented to select appropriate methods for evaluation of phytoavailable metal status in peaches grown in alkaline alluvial soils. Component plant parts (leaf and fruit flesh and peel) and soil samples were collected from 21 orchards. Fourteen extraction methods were applied to the soils to determine the phytoavailable metal content of the soils. Metal [iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), chromium (Cr), nickel (Ni), cobalt (Co), lead (Pb), and cadmium (Cd)] concentrations in leaf, flesh, and peel samples were assayed, and the relationship was investigated among metals in component parts of the plant. Metals were assayed by various methods to select the most representative method. The methods of aqua regia, Morgan extraction solution, ammonium acetate (NH4OAc; pH 4.8), 0.01 M disodium ethylenediamine‐di‐o‐hydroxyphenylacetic acid (Na2EDDHA), and sodium acetate (NaOAc) + diethylenetriaminepentaacetic acid (DTPA) for Fe and DTPA + triethanolamine (TEA) + calcium chloride (CaCl2), 0.05 N hydrochloric acid (HCl) + 0.025 N sulfuric acid (H2SO4), NH4OAc (pH 4.8), 0.05 M ethylenediaminetetraacetic acid (EDTA; pH 7.0), 0.01 M Na2EDDHA, and 1 M ammonium bicarbonate (NH4HCO3) + 0.005 M DTPA for Ni were well correlated to Fe and Ni in the leaves, respectively. The main factors affecting Fe and Ni availability in the soils were compared with the other methods. Therefore, based on this study, 0.01 M Na2EDDHA should be used for determination of phytoavailable Fe and Ni status in peaches grown on alkaline alluvial soils.

Poor correlation was found among the rest of the metals assayed by the methods, concentrations of these metals in component parts of the peach trees, and the examined soil properties. Metal content of the flesh had low correlation coefficients with the examined properties.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.