56
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Adsorption of Arsenate on Coarse Loamy Mixed Hyperthermic Fluventic Haplustept Soil of Punjab, Northwest India

, &
Pages 3015-3022 | Received 04 Nov 2007, Accepted 20 Jan 2009, Published online: 27 Oct 2009
 

Abstract

A laboratory experiment studied the adsorption of arsenate on coarse loamy mixed hyperthermic Fluventic Haplustept soil of Punjab to serve as cheap materials for removal of arsenic (As) from water with elevated As concentration. The arsenate adsorptions onto soil and soil + iron fillings are described by a two‐region Langmuir isotherm equation; that is, the plots showed two distinct linear portions. The bonding energy and adsorption maxima for arsenate adsorption by soil increased slightly at higher equilibrium temperature of 305 K relative to 280 K in the Langmuir plot for region I but followed an appreciative decline in both parameters for region II. The addition of iron fillings enhanced the adsorption maxima of arsenic soils by 2.5‐fold because of physical adsorption and 4.44‐fold because of chemisorptions or precipitation at weak and strong As concentrations, respectively, in soil–water equilibrated systems. Thus, the results of the present investigation suggest that water withdrawn from shallow aquifer containing elevated As concentrations should be equilibrated with mixtures of soil and iron fillings for removal of As. After an equilibration period, separation of water by decantation or filtration could be used for drinking purposes for humans and domestic animals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.