208
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Zeolite Effects on Immobile Water Content and Mass Exchange Coefficient at Different Soil Textures

, &
Pages 2935-2946 | Received 24 Mar 2011, Accepted 29 Nov 2011, Published online: 26 Nov 2012
 

Abstract

The concern for groundwater pollution by agrichemicals through solute movement within the soil is widespread. Zeolite is a type of soil amendment that is utilized to improve physical properties of soil and ameliorate polluted soil. The high negative charge of the zeolite and its open space structure allows adsorption and access of heavy metals and other cations and anions. The objectives of this research were (i) to determine the effects of different application rates of zeolite (0, 2, 4, and 8 g kg−1) on the immobile water content and mass exchange coefficient in a loam soil and then (ii) to determine the effects of optimum application rate of zeolite on the immobile water content and mass exchange coefficient of sandy loam and clay loam soils in saturated conditions by a mobile and immobile (MIM) model. In a disturbed soil column, a method was proposed for determination of MIM model parameters, that is, immobile water content (θim), mass exchange coefficient (α), and hydrodynamic dispersion coefficient (Dh). Breakthrough curves were obtained for different soil textures with different zeolite applications in three replicates, by miscible displacement of chloride (Cl−1) in disturbed soil column. Cl−1 breakthrough curves were evaluated in terms of the MIM model. The results showed that the pore water velocity calculated based on the total soil volumetric water content (θim+ θm) and real pore water velocity calculated based on the mobile water content (θm) increased in the loam soil with an increase in zeolite application rate, so that, between these different rates of zeolite application, the maximum value of pore water velocity and real pore water velocity occurred at zeolite application rates of 8.6 and 11.5 g kg−1, which are indicated as the optimum application rates. However, the comparison between different soils showed that the zeolite application rate of 8 g kg−1 could increase pore water velocity of sandy loam and loam soils by 31% more than that of clay loam soil. The immobile water content and mass exchange coefficient of loam soil were correlated with the zeolite application rate and reduced with an increase in the rate of applied zeolite. In a comparison between different soils at zeolite application rate of 8 g kg−1, the immobile water contents of the zeolite-treated soil decreased by 57%, 60%, and 39% on sandy loam, loam, and clay loam soils, respectively, compared with the untreated soil. Furthermore, zeolite application could reduce mass exchange coefficient by 9%, 43%, and 21% on sandy loam, loam, and clay loam soils, respectively. A positive linear relationship was found between θim and α. Zeolite application increased real pore water velocity of sandy loam soil by 39% and 46% compared with loam and clay loam soils, respectively. In other studies there was a decrease in ammonium and nitrate leaching due to the zeolite application, and therefore, an increase in real pore water velocity due to zeolite application in sandy loam soil, as compared with the loam and clay loam soils, may not show more rapid movement of solute and agrichemicals to the groundwater.

Acknowledgments

This research was supported in part by Grant No. 90-GR-AGR-42 of Shiraz University Research Council, the Drought National Research Institute, and the Center of Excellence on Farm Water Management.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.