216
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Adsorption and Desorption of Boron as Influenced by Soil Properties in Temperate Soils of Lesser Himalayas

&
Pages 683-698 | Received 02 Oct 2012, Accepted 03 Nov 2014, Published online: 16 Mar 2015
 

Abstract

Boron (B) adsorption increased with increasing concentration. Langmuir adsorption isotherm was curvilinear. The maximum value of adsorption maxima (b1) was observed Sagipora soil and maximum bonding energy (k) constant was in Anantnag soil. The Langmuir isotherm best explains the adsorption trend at low adsorbent concentrations. A significant correlation among b1, clay, and cation exchange capacity was observed. Linear affiliation was observed in all the soils at all concentration, indicating that B adsorption data conform to the Freundlich equation. Soils with greater affinity for B adsorption, like Sagipora, tended to desorb less B. Boron desorption was positively and significantly correlated with sand content and negatively with clay content and cation exchange capacity. The maximum value of 50.76 mg g−1 for desorption maxima (Dm) was observed in Sagipora soil, and mobility constant (Kd) was maximum in Khag soil (0.412 ml kg−1).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.