91
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Genotypic Divergence in Expression of Zinc-Deficiency Symptoms of Rice (Oryza sativa L.) in Sand Culture

, , &
Pages 2932-2948 | Received 10 Jul 2012, Accepted 23 Apr 2014, Published online: 10 Nov 2014
 

Abstract

Zinc (Zn) deficiency is a ubiquitous disorder constraining rice production worldwide. A sand culture experiment was conducted in factorial randomized block design with three replications to study the relative performance of 18 rice (Oryza sativa L.) genotypes experiencing Zn stress. Modified Hoagland’s solution was employed as the nutrient medium and the experiment was maintained for 60 days from sowing. The genotypes were categorized as efficient (Norungan, ASD 16, Pokkali, Pusa Vikas, TRY 1, and Triveni), moderately efficient (White Ponni, CO 47, ADT 36, IR 8, ASD 20, and TRY 2), and inefficient (ADT 38, PMK 3, CO 43, CSR 10, ADTRH 1, and MDU 5) to Zn stress based on the preliminary solution culture experiment (Sudhalakshmi 2007). Growth performance, dry-matter production, biochemical constituents, and enzymatic activity of rice were measured employing graded levels of Zn (at 0, 0.025, 0.05, 0.1, and 0.2 mg L−1) and were statistically analyzed using the method of Panse and Sukhatme (1978). The efficient rice genotypes showed minimum reduction in dry-matter production in Zn stress conditions while the inefficient rice genotypes suffered severe reduction. Zinc-efficient rice genotypes were not responsive to fertilizer. Dry-matter production, chlorophyll a, chlorophyll b, total chlorophyll, soluble protein, and indole-3-acetic acid (IAA) oxidase activity can be employed as diagnostic tools to differentiate Zn-efficient and Zn-inefficient rice genotypes in sand culture.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.