369
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Performance of biochar derived from Cymbopogon winterianus waste at two temperatures on soil properties and growth of Bacopa monneri

, , , , &
Pages 2741-2764 | Received 08 Sep 2017, Accepted 25 Sep 2018, Published online: 10 Nov 2018
 

ABSTRACT

The present study aimed to evaluate the effect of biochar derived from the distilled waste of Cymbopogon winterianus at two different pyrolysis temperatures (450°C and 850°C) on the chemical and biological properties of sandy loamy soil (SLS) and its subsequent impact on plant growth. Pot experiments utilizing Bacopa monnieri were performed in a greenhouse with four different application rates of biochar (2%, 4%, 6%, and 8% (w/w)) for 120 days. Biochar induced alterations in soil properties (nutrients, enzymes, and microbes) and plant responses (yield, biocide and antioxidant content) to biochar addition were measured. Biochar application, notably improved the soil carbon, cation exchange capacity, and the availability of NH4 + and phosphorus. Initially, biochar produced at the lower temperature had more effect on the available nitrogen, phosphorus, soil enzymatic properties, and plant biomass growth. After 120 days, the pyrolysis temperature had only a marginal influence on biochar-induced effects on soil pH, WHC, and soil enzymatic activities. Our results suggest that C. winterianus derived biochar amendment leads to an overall amelioration of soil fertility and plant growth improvement. In specific biochar produced at lower temperatures (450°C) was more effective for improvement of plant biomass and soil characteristics.

Acknowledgments

Authors are also acknowledging Director, CSIR-CIMAP for providing analysis facility.

Supplementary material

Supplemental data for this article can be accessed here.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.