7
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Movement of nitrogen‐15 labeled nitrate in large undisturbed columns of poorly drained soil

, , &
Pages 809-826 | Published online: 11 Nov 2008
 

Abstract

A laboratory study was conducted with large (20‐cm i.d., 110‐cm long PVC pipe) intact soil columns to determine the movement of fertilizer NO3 in poorly drained, conventionally tilled soil under simulated low (7.6 cm) and heavy (15.2 cm) rainfall. Soil in the columns was brought to near‐maximum water‐holding capacity (9 kPa) to simulate the typical field soil moisture regime during the spring. A constant‐level water table was imposed at the base of the column to further simulate field conditions of the Drummer silty clay loam (mixed, mesic, Typic Haplaquoll) soil used. Fertilizer was applied in solution at a rate equivalent to 168 kg N ha‐1 as 15N‐labeled KNO3. Water was then applied in three applications, spaced one wk apart. To minimize the movement of water along the soil‐pipe interface, a 3 mm‐wide band of air‐dried disturbed soil was packed around the core to ensure a seal along the interface. Recovery of fertilizer NO3 ‐N below the water table at the end of the 28‐d study was < 0.06% (0.1 kg N ha‐1) and 0.5% (0.9 kg N ha‐1) of that applied for the low and high treatments, respectively. Denitrification losses were negligible for both water treatments (≤ 1 kg N ha‐1). Fertilizer N distribution in the columns indicated significant movement of N beyond estimated water‐displacement depths, apparently caused by preferential flow. However, the majority of the N was restricted to the upper portions of the columns. The results indicate that preferential flow of water in poorly drained, conventionally tilled soils during high rainfall periods can lead to the movement of fertilizer N to shallow ground water, but that the amounts are apparently very small.

Notes

R. M. Vanden Heuvel, R. G. Hoeft, and R. L. Mulvaney are affiliated with the Department of Agronomy, University of Illinois, Urbana, Illinois 61801. B. R. Montgomery is associated with the Minnesota Department of Agriculture, St. Paul, Minnesota 55107.

This study was a part of Project No. ILLU‐16–53236, Illinois Agricultural Experiment Station. The research was supported in part by the Tennessee Valley Authority.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.