17
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Sequential fractionation of chromium and nickel from some serpentinite‐derived soils from the eastern Transvaal

&
Pages 1963-1973 | Published online: 11 Nov 2008
 

Abstract

Soils derived from ultramafic serpentinitic rocks are inherently infertile. These soils support plant species that are able to hyperaccumulate both chromium (Cr) and nickel (Ni). This study was conducted to determine the efficacy of a sequential extraction technique in explaining sources of Cr and Ni that are taken up by plant species growing on these soils. The sequential extraction of soil samples obtained from the eastern Transvaal involved the following reagents: H2O and 0.5M KNO3, 0.5M NaOH, 0.05M Na2EDTA, and 4M HNO3. More than 95% of the total Cr was extracted by HNO3 while the remaining extractants fell into the order NaOH > EDTA ≫ KNO3 + H2O. There would appear to be a loose correlation between easily soluble Cr (KNO3 + H2O) and the uptake of Cr by the plant. A somewhat higher proportion of Ni was extracted prior to the HNO3 treatment although amounts removed by KNO3 + H2O were all less than 1% of the total. It would appear that plant species growing on these soils are able to accumulate these elements from sources other than those considered easily available. A highly significant coefficient of determination was obtained between Ni extracted by oxalate and EDTA extractable. The fraction extracted by the steps in the sequential procedure can be related to exchangeable and sorbed (KNO3 and H2O) and an easily acid soluble inorganic fraction (HNO3). The NaOH and EDTA fractions are probably related to the Cr and Ni bound in the form of organic complexes and associated with iron oxides.

Notes

Department of Agronomy, University of Natal, P. O. Box 375, Pietermaritzburg, 3200, South Africa

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.