20
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Speciation in metal contaminated soils as revealed by an ion exchange resin membrane fractionation procedure

&
Pages 3013-3026 | Published online: 11 Nov 2008
 

Abstract

Ion exchangers have proven to be a useful tool in the study of metal speciation in aquatic environments, but have seen little application in the study of metal behavior in soil environments. The labile metal species in polluted soils were evaluated by equilibrating soil suspensions with ion exchange resin membranes of different types at pH values ranging from 3 to 9. The total soluble metal content of cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) contaminated Western Canadian soils was subdivided into (i) low‐pH labile, (ii) weak‐acid labile, (iii) weak‐base labile, (iv) high‐pH labile, and (v) non‐adsorbable forms using cation and anion exchange membranes. Soil suspension is mixed overnight with different types of resin membranes and the cations transferred from the soil are subsequently eluted from the membranes using 1N HCl. The HCl extract is then analyzed for Cd, Cr, Ni, and Pb. The aqueous phase remaining in contact with the soil residue is considered the amount of released non‐labile, non‐adsorbable species. The low‐pH labile fraction constituted the largest proportion of the added metal in poorly buffered (sandy) soils. Weak‐acid and base labile fractions were typically highest in highly buffered soils. Clearly, metal contaminated soils most likely to cause environmental damage are sandy textured soils subject to acidification, although the production of chelating substances by roots and microorganisms may also mobilize considerable quantities of metal in soils of high clay content.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.