30
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Interactive effects of wheel‐traffic and tillage system on soil carbon and nitrogen

, , , &
Pages 3027-3043 | Published online: 11 Nov 2008
 

Abstract

Wheel‐traffic induced soil compaction has been shown to limit crop productivity, and its interaction with tillage method could affect soil nutrient transformations. A study was conducted during 1993–1994 to determine interactive effects of tillage method (conventional tillage and no‐tillage) and wheel‐traffic (traffic and no traffic) on soil carbon (C) and nitrogen (N) at a long‐term (initiated 1987) research site at Shorter, Alabama. The cropping system at this study site is a corn (Zea mays L.) ‐ soybean [Glycine max (L.) Merr] rotation with crimson clover (Trifolium incarnatum L.) as a winter cover crop. Soil organic C, total N, and microbial biomass carbon (MBC) were not significantly affected by six years of traffic and tillage treatments. However, conventional tillage compared to no‐tillage almost doubled the amount of CO2‐C respired over the entire observation period and during April 1994 field operations. Soil respiration was stimulated immediately after application of wheel‐ traffic, but nontrafficked soils produced greater amounts of CO2‐C compared to trafficked soils during other periods of observation. Nitrogen mineralization was significantly lower from no‐tillage‐trafficked soils compared to conventional tillage‐trafficked and no‐tillage‐nontrafficked soils for the 1993 growing season. A laboratory incubation indicated the presence of relatively easily mineralizable N substrates from conventional tillage‐trafficked soil compared to conventional tillage‐nontrafficked and no‐till‐trafficked soils. For the coarse textured soil used in this study it appears that conventional tillage in combination with wheel‐traffic may promote the highest levels of soil microbial activity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.