306
Views
12
CrossRef citations to date
0
Altmetric
Articles

Prolonged mechanical and physiological changes in the upper extremity following short-term simulated power hand tool use

, , &
Pages 15-24 | Published online: 23 Mar 2009
 

Abstract

This study investigated in-vivo changes in upper limb dynamic mechanical properties and magnetic resonance imaging (MRI) parameters following short-term power hand tool operation. Previous studies have found reduction in mechanical properties following short-term power tool usage at long build-up times. This study advances that work by having participants operate a simulated pistol grip power hand tool and evaluating changes in mechanical properties, strength, discomfort level and MRI prior to tool operation and daily for 3 d after tool operation. Twenty-four participants were randomly assigned to operate a simulated power hand tool for either a high peak reaction force of 123 N (peak torque = 8 Nm, build-up time = 250 ms) or at a low peak reaction force of 5 N (peak torque = 2 Nm, build-up time = 50 ms). Subjects operated the tool for 60 min at the rate of six times per min. A reduction in stiffness (27%, p < 0.05) was observed 24 h after tool operation for the high force group and this change persisted (26%, p < 0.05) up to 72 h after tool operation. Similar changes were not observed for the low force group. No changes were observed in mass moment of inertia, damping, isometric strength and damping for either group (p > 0.05). There was a signal intensity increase (12%, CI 19%, 5.06%) in the supinator muscle MRI for both groups 24 h after tool operation but only the high force group remained elevated (10%, CI 13.7%, 0.06%) 72 h after tool operation. Persistent short-term changes in mechanical and MRI parameters at high force levels could indicate increased strain on the upper limb and may negatively affect ability to react during rapid forceful loading of the upper limb. This research can ultimately lead to better ergonomic interventions through quantitative power hand tool design guidelines and work practices based on understanding the damaging effects of exposure to specific levels of reaction force, build-up time and repetition, as well as providing new outcome measures for epidemiological studies.

Acknowledgements

This article is dedicated in honour of Professor Don B. Chaffin. Many of the methods and principles used in this research were pioneered by Don Chaffin. Thank you for your inspiration, mentorship and guidance. This research was partially supported by the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention Grant R01OH07793-02 and The National Institutes of Health, NCRR K12 Roadmap Grant 8K12RR023268-02.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.