996
Views
40
CrossRef citations to date
0
Altmetric
Articles

Pressure thresholds of the human foot: measurement reliability and effects of stimulus characteristics

, &
Pages 282-293 | Received 21 Sep 2009, Accepted 21 Dec 2010, Published online: 09 Mar 2011
 

Abstract

Information related to reliable values of discomfort thresholds can help to improve the designs of various products. This study aimed to investigate the measurement reliabilities associated with pressure thresholds, while determining the effects of stimulus characteristics (stimulus area, indentation speed) of the human foot. An indentation apparatus was used with four sizes of indentation probes and three indentation speeds. In total, 13 locations on the right foot of 10 male and 10 female participants were tested to determine the pressure discomfort thresholds (PDT) and pressure pain thresholds (PPT). Results show that the tests had very good measurement reliability with intra-class correlations (ICC) greater than 0.8 for the PPT measurements and acceptable reliability (most ICC > 0.75, with a few between 0.5 and 0.75) for the PDT measurements, demonstrating that participants are capable of judging their pain and discomfort thresholds. Pressure sensitivity differs across locations of the foot, with the medial plantar arch of the foot being the most sensitive, followed by the dorsal surface of the foot. The heel area was the least sensitive. PPT and PDT are dependent on the stimulus characteristics of the area and the speed of indentation. A smaller area has a higher PPT and PDT, indicating significant effects of spatial summation. The increase of PDT and PPT at higher speeds may be partially explained by the increase in stiffness because foot tissue exhibits viscoelastic properties. The findings can have a significant impact on the design of footwear and other accessories for improved foot health and comfort.

Statement of Relevance: This study investigated the threshold measurement reliability while determining the pressure sensitivity on the surface of the foot with varying stimulus characteristics. The findings may be very useful in the design of footwear and other accessories for improved comfort and reduced injuries.

Acknowledgements

The authors would like to thank the Research Grants Council of Hong Kong for funding this study under grant HKUST 613406. The support of the Shanghai Pujiang Program (PJ[2009]00861), NSFC (No. 70971084) and the open fund of the Shanghai Key Lab of Advanced Manufacturing Environment (KF200901) is also appreciated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.